Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7211, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785810

RESUMO

The knowledge of the dynamic of the Campi Flegrei calderic system is a primary goal to mitigate the volcanic risk in one of the most densely populated volcanic areas in the world. From 1950 to 1990 Campi Flegrei suffered three bradyseismic crises with a total uplift of 4.3 m. After 20 years of subsidence, the uplift started again in 2005 accompained by a low increment of the seismicity rate. In 2012 an increment in the seismic energy release and a variation in the gas composition of the fumaroles of Solfatara (in the central area of the caldera) were recorded. Since then, a slow and progressive increase in phenomena continued until today. We analyze the INGV - Osservatorio Vesuviano seismic catalogue of Campi Flegrei from 2000 to 2020 in order to look for any variation in the seismic parameters and compare them with geochemical monitored ones. A remarkable correlation between independent variables of earthquake cumulative number, CO/CO2 values and vertical ground deformation reveals a likely common origin. Moreover the correlation between all the variables here analysed enlightens that the same origin can cause the temporal behavior of all these variables. We interpret the seismological, geochemical and geodetic observable in terms of the injection of magmatic fluids into the hydrothermal system or its pressurization.

2.
Rev Sci Instrum ; 90(9): 094501, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575245

RESUMO

We present the realization, installation, and first results of a three-axial Fiber Bragg Grating (FBG) strain sensor prototype. This sensor has been developed in the framework of the Mediterranean supersite volcanoes (http://www.med-suv.eu, 2013) project and, in particular, with the aim at contributing to the study and monitoring of Etna volcano. The FBG sensor was installed in the facilities of the Serra La Nave Astrophysical Observatory (Catania, Italy) about 7 km south-west from the summit craters, at an elevation of about 1740 m. The three-axial device showed a dynamic range of some hundreds of microstrains with microstrain resolution (submicrostrain concerning the vertical component). That is a good trade-off among performances, cost, and power consumption. The sensor structure and its read-out system are innovative in their assembly and offers practical advantages in comparison with traditional strain meters. As a demonstration of the performances of our device, the data of about 28 months of operation are presented together with the records of some local, regional, and teleseismic events. The sensor along the vertical axis showed to be the best performing one, having a power spectral density of about -90 dB re. 1ε2/Hz around one day period.

3.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530551

RESUMO

Cosmic-ray muon radiography (muography), an imaging technique that can provide measurements of rock densities within the top few 100 m of a volcanic cone, has now achieved a spatial resolution of the order of 10 m in optimal detection conditions. Muography provides images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with other conventional methods (i.e. gravimetric). We expect such precise measurements, to provide us with information on anomalies in the rock density distribution, which can be affected by dense lava conduits, low-density magma supply paths or the compression with the depth of the overlying soil. The MUon RAdiography of VESuvius (MURAVES) project is now in its final phase of construction and deployment. Up to four muon hodoscopes, each with a surface of roughly 1 m2, will be installed on the slope of Vesuvius and take data for at least 12 months. We will use the muographic profiles, combined with data from gravimetric and seismic measurement campaigns, to determine the stratigraphy of the lava plug at the bottom of the Vesuvius crater, in order to infer potential eruption pathways. While the MURAVES project unfolds, others are using emulsion detectors on Stromboli to study the lava conduits at the top of the volcano. These measurements are ongoing: they have completed two measurement campaigns and are now performing the first data analysis.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...